
Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

This content is based upon work supported by the US Department of Homeland Security's Cybersecurity & Infrastructure Security Agency under
the Cybersecurity Education Training and Assistance Program (CETAP).

1

LESSON NOTES
Intro to Linux

Scripting, Containers, and Automation
3.1.1 Shell Script Elements Part 1

Lesson Overview:

Students will:
• Understand some of the basic shell scripting commands

Guiding Question: How can shell scripts be used to automate common tasks?

Suggested Grade Levels: 9 - 12

Technology Needed: None

CompTIA Linux+ XK0-005 Objective:

3.1 - Given a scenario, create simple shell scripts to automate common tasks
 • Shell script elements

 ₀ Loops ₀ Comparisons
 ₋ while ₋ Arithmetic
 ₋ for ₋ String
 ₋ until ₋ Boolean

 ₀ Conditionals ₀ Variables
 ₋ if ₀ Search and replace
 ₋ switch/case ₀ Regular expressions

 ₀ Shell parameter expansion
 ₋ Globbing
 ₋ Brace expansions

2Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Shell Script Elements
In shell scripting, there are many loops, conditionals, variables, and functions. We will investigate some of
these with a brief definition followed by a screenshot generalization to explain how they function.

A while loop executes a set of commands as long as a specified condition is true.

while [condition]; do
 commands
done

A for loop iterates over a sequence, like a range of numbers, and performs commands.

for variables in {start...end...step}; do
 commands
done

An until loop executes a set of commands as long as the specified condition is false.

until [condition]; do
 commands
done

Conditionals in shell scripts are control structures that allow you to make decisions and execute different
sets of commands based on whether a certain condition is true or false.

An if statement executes a set of commands based on the evaluation of a condition.

if [condition]; then
 commands
fi

Switch/Case provides multiple possible execution paths based on the value of an expression.

3Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

case $variable in
 pattern1)
 commands
 ;;
 pattern2
 commands
 ;;
 *)
 default commands
 ;;
esac

Shell parameter expansion is a feature in shell scripting that allows you to manipulate and expand the
values of variables. It provides a convenient way to perform various operations on variables, such as
extracting substrings, performing pattern matching, and more. Parameter expansion is commonly used in
shell scripts to enhance the flexibility and efficiency of variable handling.

Globbing matches filenames with patterns, similar to regular expressions.

files=*.txt

Brace expansions generate arbitrary strings using curly braces.

echo {1..5}

In shell scripting, comparisons are essential for making decisions based on the values of variables or the
success/failure of commands.

Perform arithmetic operations within double parentheses.

if ((num1 > num2)); then
 commands
fi

Compare strings using operators like == (the same) or != (not the same).

if [“$str1” == “$str2”]; then
 commands
fi

In shell scripting, there isn’t a native boolean data type like in some other programming languages.
However, boolean logic is still implemented using the exit status of commands and conditional

4Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

statements. Users can combine conditions using logical operators (&& for AND, || for OR).

if [condition1] && [condition2]; then
 commands
fi

In shell scripting, variables are used to store and manipulate data. They act as placeholders for values that
can be referenced or modified within a script.

variable_name=”value”

If there is a piece of text that needs to have a certain part replaced, “search and replace” does just that.

result=${string/old/new}

Regular expressions (regex or regexp) are powerful patterns used for matching character combinations
within strings. They are widely used in shell scripting for tasks like string manipulation, text parsing, and
pattern matching.

These are the basic building blocks for shell scripting. They allow you to create powerful and dynamic
scripts for automating tasks on the command line.

